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In this paper we discuss the motion of the vapor formed during the
evaporation of a solid by a continuous radiation spectrum, The vapor
is assumed to be heated by this radiation to a temperature T much
higher than the phase-transition temperature Ty, and much higher than
the temperature T; at which significant ionization of the vapor begins.

In the case, Ty and Tj can be neglected (as can the heat of evapo-
ration Qy and the energy Q; expended on ionization). As a result of
this motion, the vapor has a density p much lower than the density py
of the solid. It can therefore be assumed that the heating wave moves
through an absolutely cold and infinitely dense gas. At the same time,
the vapor temperature is assumed low enough that reradiation can be
neglected. The radiation-absorption coefficient % fortheionized vapor
can be described by a power-law dependence on T and p for certain
ranges of T, &, and the photon energy €. In this case, the motion of
the gas is a self-similar problem. The spectrum and angular distribu-
tion of the incident radiation [¢(e,6)] and the % and € dependences can
be arbitrary. A system of ordinary differential equations is found and
solved.

Intense radiation incident on a solid surface will evaporate the
solid. If the absorption coefficient n of the vapor and the flux density
q of the radiation are high enough, the escaping vapor will be heated
to a high temperature in a relatively short time. This temperature will
not only be much higher than the evaporation temperature T, but it
will also be higher than the "ionization temperature” T;. If the internal
energy per unit mass of the vapor is much higher than the heat of evap-
oration Qy and the energy Q; expended on ionization, and if the vapor
density p i§ much lower than the initial density py as a result of its es-
cape, then the problem of the motion and heating of the vapor can be
simplified through the assumptions

Toy=Ti=0Qy,=0;=0, wo=1/ps=10) (0.1)

Po =

(here and below, v is the specific volume). We can therefore assume
that the heating wave moves through an infinitely dense and absolutely
-cold gas. Inthe region of multiple and complete ionization, the ionized-!
vapor absorption coefficient %, associated with free-free electron tran-
sitions in the field of ions, and bound-free transitions from the higher-
lying states of atoms and ions, has an approximately power-law depen-
dence on T and p [1], or on p and p (p is the pressure):

% = ko () T2P% = Ko (g) pP2. (0.2)

Here k and K are numerical coefficients which depend on the sub-
stance and on the ranges of T, p, and € in which (0.2) is used. For a
completely ionized gas, wehave o = 3/2,8 =1, a = =5/2, b = =3/2,
and ¢(g) = e* when e < T;ora = 3/2,8=1,a=23/2, andb =— 1/2when
when € > T, Weassume that (0.2) holds for any T, for approximation (0.1).
We assume the ratio of specific heats ¥ to be constant for a certain
temperature range in the range of multiple and complete ionization.
With these simplifying approximations, the problem of the planar,
transient flow of a gas heated by a beam of monochromatic radiation is
a self-similar problem. It has been studied in [2,3]. It is shown below
that the analogous problem of the motion of a gas heated by a nonequi-
librium continuous radiation spectrum is also self-similar.

For a partially ionized gas, approximation (0.2) is usualy satisfied
only for the long-wavelength part of the incident spectrum. For the
short-wavelength part of the spectrum (that is, for photons whose energy
is close to or greater than the ionization potential characteristic of the
ions for the given temperature range, and which are capable of direct
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photoionization of these ions from the ground or first excited status), the
absorption coefficient is usually much smaller (by several orders of
magnitude). This "hard" radiation penetrates a short distance into the
solid, causing intense heating of a thin surface layer of small mass. An
afterionization wave propagates through the substance, moving under
the influence of the radiation flux in the hard part of the spectrum; if
the temperature of the surface layer is close to the source temperature
Tes and reradiation becomes important, there will also be a thermal
wave [1]. Since the energy expended in heating is large in these waves,
their propagation velocity is small (in comparison with that of the

wave of evaporation, initial ionization, and heating of the plasma by
the long-wavelength part of the spectrum), even if the hard and soft
parts of the incidence spectrum have comparable energies (E, and Eg).
Also, the intense reradiation by the thermal wave in the hard part of
the spectrum increases its propagation velocity. Finally, the energy in
the short-wavelength part of the spectrum may in general be small
because of self-adsorption in the source itself (for example, adsorption
of the short-wavelength radiation in the cold working gas ahead of a
shock wave front in an explosive source [4]). Accordingly, the heating
waves for the various parts of the source spectrum may propagate dif-
ferently. Since the mass of the surface layer heated by the short-wave-
length part of the spectrum is small, the pressure produced as a result of
of the disintegration of the surface layer is small when Ep, is of the order
order of Es or, especially, when Eh < Eg; that is, the hydrodynamic
effects of the heating and surface-layer disintegration on the motion and
and heating of the deep layers heated by the "basic” part of the spec-
trum can also be neglected. The high temperature and low density of
this layer only facilitate the penetration of the long-wavelength part of
the spectrum into the deeper layers; however, because of the small
mass of this layer, even this phenomenon has little effect on the hydro-
dynamic processes in the deeper layers. Accordingly, Eq. (0.2) can
frequently be assumed valid for the basic part of the spectrum in the
case of a partially ionized gas, also; the rest of the spectrum may
simply be neglected. These restrictions on the applicability of the
self-similar problem are generally removed in the case of a completely
ionized gas. A state close to that of complete ionization arises when
two ionization potentials typical of a given temperature range are
greatly different (this occurs, for example, in the case of the alkaline
metals, and also when one atomic shell has been essentially ionized,
while another has not yet started 10 be ionized; e.g., the L- and K~
shells or the M- and L-shells).

We consider here the case in which the heating is caused by non-
equilibrium radiation, that is, radiation such that the intrinisic radia-
tion of the vapor may be neglected. This is a valid assumption when
the vapor temperature is considerably below the source temperature Tg,
or, more accurately, when the following condition holds(for a Planckian
source spectrum):

g, (1 €2 WAL .E_Z>
WaTex(Te,Te)>dT 7 7)- ©.3)

Here W is the source-radiation dilution coefficient due togeome-
tric factors, ¢ is the Stefan-Boltzmann constant, &; and ¢, are the
boundaries of the "basic part” of the spectrum, and x is the fraction of
the spectral energy of a Planckian source with a temperature T or T
for photons with energies & = & < ;. We note that the boundaries &,
and &, for the source and vapor-radiation spectra are sometimes slightly
different, but condition (0.3) can be easily modified for this situation
or for a non-Planckian source spectrum,



For our problem, the radiation intensity J = I (m, t, &, 6) is a func-
tion of four variables: the time t, the Lagrangian mass coordinate m,
the photon energy €, and the angle 6 between the direction of motion
and the beam direction. The intensity J; = J (0, t, &, 8) of the radiation
incident on the boundary m = 0 is assumed to be a given function. In
the self-similar problem, J can be represented as

J = J (mt™, g, 8).
(0.4)
This can be done (when conditions (0.1)-(0.3) are satisfied) when J;
can be represented by

To=1tE, 0) (5 <e<e, 6 <O<<O).

(0.5)

If the source spectrum is Planckian, condition (0.5) requires that

= const. In this case, the power-law time dependence of theinten-
sity J, may reflect, for example, motion of the radiation source toward
the irradiated surface; in this case, however, the limiting angle 8, of
the incident radiation also changes (usually, 8, = 0). As before, the
problem is self-similar if these angles 8, (t) are always small; that is,
if the radiation is almost completely unidirectional. The arbitrary na-
ture of the function ¥(e, 6), which shows the spectrum and angular
distribution of the source radiation, and the arbitrary nature of the func-
tion ¢ (e), which shows the dependence of the absorption coefficient
on the photon energy, permit us to analyze the effects of these func-
tions on the heating and motion of the substance for the case of the
self-similar solution.

1. The equations of motion, continuity, energy, and
transport of the source radiation are

6p . I Ju
at + 0 Fra e (1.1)

de aq __ by )
37+p—a?+m—0, 3_1—1’ (1.2)

e, 0, .
q= chds, qg=28.lsinecosed9,
31 ‘N

coseai =—xJ. (1.3)

When v = const, and when condition (0.2) holds the en-
ergy and radiation-transport equations can be written

€, 0,
9 /4 :
v trp i =20r—1){{ssinod0 e,

g Oy

aJ
cos 8 5= — kp'vig(e) J. (1.4)

At initialtime, the gas which occupies a half-space,
is assumed cold and motionless:

u{m, ) =p@m, )=0, ov(m, 0) =uyv,. (1.5)

The boundary conditions for the problem are governed
by J, and (in general) by the pressure p(0,t) of a piston
or by its velocity u(0,t). For the self-similar problem,
the piston must, of course, move according to a spe-
cial power law. However, the case of greatest interest
is usually disintegration in vacuum: p(0,t) = 0.

We introduce the self-similar variables V, P, U,
Q, and x:

v (m, t) = t°qq k™ °V (z),
pim, t) = °q,"k" P (z),

uw (m, t) — t‘-"quuk—l /c[/‘ (x)’
J(m t g, e :taqu(x e, e)’
(a+b)/ck_2/c

z=mt q
c=3a—b—2, n=la{a +b +32—0dl/c,
co, = —3 +a( 2b+1) cop, =14 a (2a — 1),
co,=afle—b—1)—1, ch, 7——(2b—{—)
chy = 2a — 1, c?»~a—b— (1.6)

With @ =0, a = —3/2, and b = —1/2, we have ¢ = —6,
n =4/3, wy =1/2, wp = =16, wy = 1/, Ay = 0, A, = 2/3,
and Ay = 1/3. '

Substituting (1.6) into (1.1) and (1.4), we find a sys-
tem of self-similar equations:

rz (VP' 4-yPV') +
+11=3y +a(2a — 1— v (2b 4+-1)}) / c]lPV=
0y €4

=(y—1) (S S Q (z, &, 0) sin 6d6de),

Pt rall’ + [(o(a —b—1)—1) /e U =0,

raV' —[3+a2b+1)/e]V="U’
RELD— —9@ 1°P'Q(z, 2. 0),
er=b—3a—a(atb). (1.7

cos 0

We note that in the case of a finite initial density p,,
the problem is self-similar only when & = —3/(1 + 2b);
however in the limiting case of infinite density (v, = 1/
/py =0), the value of ¢ is arbitrary (the limiting tran-
sition for the case of monochromatic radiation was
analyzed in [3]).

For a self-similar problem, the piston should move
according to

w0, t) =uyt¥ (0T p (0, t) = pyt°P) . (1.8)

Because of the substitution of variables which has
been made, the initial and boundary conditions become
boundary conditions for Egs. (1.7):

U=1U (or P=P), Q=16 for==0),

U=P= 0, V=1 for a=co, (1.9)

2. The radiation-transport equation is actually a
system of an infinite number of equations, since &£ and
6 take on an infinite set of values on the intervals
(g, &) and (6, 8). In practice, however, only one of
these equations need be solved, for the radiation inten-
sity of photons of energy &, progagating at an angle 6;;
then the other intensities can be calculated. The solu-
tion for the radiation-transport equation can be written
in the form

m

= Jo exp (—1) = J, exp (— S xdm) (t=const). (2.1)

0

Here 7 is the optical thickness of the layer for photons
of energy e propagating at an angle 6. If condition (0.2)
is satisfied, we have

T(m, t, &, 0) = Mﬁ)(

e@cos0 © (s beoo). (2.2)
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Accordingly, we have

v
T (m, t,e,8)=J (0, t, e, 0) [%%%]

¥ = @ (&) cos By .

P (o) cos O (2.3)
Transforming to self-similar variables, we find
— Q (z, £, 80)]"
Qe 0=0(0,e0) [0 o) - (2.4)

This property considerably simplifies the solution of
system (1.7).

3. It is not difficult to see that, as in the case of
monochromatic radiation (see [3]), the number of
boundary conditions ( 1.9)for system (1.7) is one greater
than the number of equations. It follows from the dis-
cussion in [3] that the solution of this problem is also
discontinuous. The proof in [3] that no more than one
discontinuity may occur inthe desired solution remains
valid here, provided that this solution does not pass
through any internal singularity (in [3], it was argued
that such solutions do not occur); also, the results
found in an analysis of the behavior of the solution with
variations in the initial density p, remain valid here.

If the incident flux is bounded in energy, and p, is
finite, there exists a finite point x; at which

Ulz;) = P(m) = Q (&, 6, ) = 0. (3.1)

According to (2.4), all the other values of Q vanish.
This point is singular because of an indeterminate form
of the 0/0 type in the radiation-transport equation
fn — o ag p—~0andJ — 0). For large opticalthicknesses,
the dominant term in the energy equation is that of the
intensity with the greatest photon energy &, (for ¢(e)
which decreases with &) and the least angle § (beams
at oblique incidence are absorbed more intensely). This
follows from (2.3) or (2.4). In a sufficiently small
neighborhood of the point x;, the solution is, within
terms of a higher order of smallness (for b < 0),

Pl—b Vo (z,

— )]~ V=V, —P/ra?2,
U =P /ra,

2 (y — 1Ae A 6Q (gy, 8;) = rz, V1P, (3.2)

On the intervals gy S e < ¢ +Aczand § < 6= 6 + Af,
we may assume

I (e, )= J(e., B).

The point x = 0 is also singular, but of the "cusp"
type. The solution in the neighborhood of this point for
Py > 0 and for o = —3/(1 + 2b) (the case of a finite
initial density) is

V=V, + Az @omr 4
+ (2P0 Vyrta - Uy Vy (2 (b — 1) [k —
— N z/[2P, (@ — 1) —rky Py,
U=1U, —ra(V—V,), P=nP, +Uz/k,
0 (g, 0, ) =

=Q (g, 0y, 0) [1 — V4@ Pyb xq (g9) / cos 6, ]- (3.3)
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Here A is an arbitrary constant; k =1 + 2b; and Py,
Vy, and Q (g, 6,0) are related by

§2 ‘S* Q (e, 0, 0)sinb6d0de =

Y &

2Vol—aP°1—b
FA=7 " (8.4)

For an infinite initial density (vq = 0), as in the case
of monochromatic radiation, the corrdinate of the shock
wave is xg = «©, The solution on the interval (x;, «) is
described by the constant functions

U=V=0, P=p. (3.5)
The point x; is singular because of the "saddle-point"

singularity which follows from the indeterminate form

of the 0/0 type in the transport equation t — = ag v — 0

for a < 0). The solution in its neighborhood (x < x,) is
V=Ia P& —ax)l", P=P —rz2V,
U=ry V,
2 (r — '1) Q (eq, 0;) AeAB = —'YT-T1P1Va (3.6)

The values of x; and P; are governed by the boundary
conditions at x = 0.

The boundary-value problem is solved by an inte-
gration of the system of equations from x =x; tox =0
and selection of x; and x4 (the discontinuity coordinate—
the shock-wave front) or P; at vy = 0 in such a manner
that the two following conditions hold at x = 0:

P(0)= P, (or U(0) =1U,),
J (0, &, 8s) = ¥ (g, B)- (3.7

When the second of conditions (3.7) does not hold,
the intengity of the incident radiation differs from the
given intensity not only in total flux, but also in angular
and frequency distribution. This circumstance distin-
guishes the continuous-spectrum problem from that of
monochromatic radiation. A special algorithm hasbeen
developed for the solution of this problem. It is based
on the monotonic contraction of a rectangle about the
desired point in the x;, P; plane. Certain qualitative
results about the nature of the solution as a function of
x; and P;, found in [3] in an analysis of the monochro-
matic problem, were used. The accompanying table
shows some results found from the solution of the prob-
lem of the heating and motion of an initially infinitely
dense medium (v4 = 0) by a radiation flux having atrun-
cated Planckian spectrum,

; [z \3exp(z)—1 _ &
Q(O’z’e)_CZT)—Wz)—{’ z‘—T ’

8
0O o, @(8) =¢e?, z;<2< 2, (3.8)
with an account of the angular distribution of the inten-
sity for an isotropic initial distribution for several
values of z;, zy, a, b, and y. The dimensionless

average energy {z) shown in the table is equal to

o={amimmnm)

From a comparison of the effects of radiation pulses
with the spectrum (3.8) and pulses of monochromatic

(3.9)



TABLE 1

zy zy ez Zq Py Xy
a=—5/2, b:*‘a/zy 'T:"'/a
0.5 3 2.03 1.16 0.732 0.606
0.5 4 2.54 1.43 1.19 0.784
0.5 5 2.94 1.52 1.78 1.00
0.5 6 3.25 1.59 2.6% 1.27
1.0 6 3.34 1.79 2.56 1.26
a:—1,b:0,~(:6/5
0.5 3 2.03 1.31 0.483 0.814
0.5 4 2.54 1.54 0.648 0.877
0.5 5 2,94 1.79 0.893 0,936
0.5 6 3.25 2.07 1.25 0.991

radiation [3] of equal total energies, and on the basis of
similarity arguments, we find that the pressures arethe
same in the two cases if the dimensionless energy of
the monochromatic-radiation photons is equal to the
value z, shown in the table.
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Fig. 1.

The accompanying figure shows self-similar pro-
files of V, P, U, and Q (x, 2,,0) for this problem, for
the case z; =1, z,=6,a=-5/2, b =-3/2, andvy =5/3.
According to Eq. (2.4), the dimensionless intensities
Q (x, z, 6) have a power-law dependence on the intensity
Q(x,6,0) shown in the figure:

Q(z,2,8) =LLCE=D 15 (56, 0)°,

et —1
/ 63\ 1
4= T) cosB’ (3.10)
A<z, —1n< 0 Yam).
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